55 research outputs found

    Complexity of colouring problems restricted to unichord-free and \{square,unichord\}-free graphs

    Full text link
    A \emph{unichord} in a graph is an edge that is the unique chord of a cycle. A \emph{square} is an induced cycle on four vertices. A graph is \emph{unichord-free} if none of its edges is a unichord. We give a slight restatement of a known structure theorem for unichord-free graphs and use it to show that, with the only exception of the complete graph K4K_4, every square-free, unichord-free graph of maximum degree~3 can be total-coloured with four colours. Our proof can be turned into a polynomial time algorithm that actually outputs the colouring. This settles the class of square-free, unichord-free graphs as a class for which edge-colouring is NP-complete but total-colouring is polynomial

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    Maximum Cut on Interval Graphs of Interval Count Four Is NP-Complete

    Get PDF
    The computational complexity of the MaxCut problem restricted to interval graphs has been open since the 80's, being one of the problems proposed by Johnson on his Ongoing Guide to NP-completeness, and has been settled as NP-complete only recently by Adhikary, Bose, Mukherjee and Roy. On the other hand, many flawed proofs of polynomiality for MaxCut on the more restrictive class of unit/proper interval graphs (or graphs with interval count 1) have been presented along the years, and the classification of the problem is still unknown. In this paper, we present the first NP-completeness proof for MaxCut when restricted to interval graphs with bounded interval count, namely graphs with interval count 4

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    Tree loop graphs

    Get PDF
    Many problems involving DNA can be modeled by families of intervals. However, traditional interval graphs do not take into account the repeat structure of a DNA molecule. In the simplest case, one repeat with two copies, the underlying line can be seen as folded into a loop. We propose a new definition that respects repeats and define loop graphs as the intersection graphs of arcs of a loop. The class of loop graphs contains the class of interval graphs and the class of circular-arc graphs. Every loop graph has interval number 2. We characterize the trees that are loop graphs. The characterization yields a polynomial-time algorithm which given a tree decides whether it is a loop graph and, in the affirmative case, produces a loop representation for the tree.Facultad de Ciencias Exacta
    • …
    corecore